Aging Effects of As-deposited and Passivated Slanted Columnar Thin Films

UNIVERSITY OF NEBRASKA-LINCOLN

D. Schmidt*, E. Schubert, and M. Schubert

Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, U.S.A.

Results

(tilted 15°) and optical model equivalent

Spatially aligned, anisotropic inclusions with three major effective polarizabilities $\mathbf{P}_{\text{eff},j}$ along principal axes $j = \mathbf{a}, \mathbf{b}, \mathbf{c}$ (based on Bruggeman)

$$\sum_{n=1}^{m} f \frac{\varepsilon_n - \varepsilon_{\text{eff},j}}{\varepsilon_{\text{eff},j} + L_j(\varepsilon_n - \varepsilon_{\text{eff},j})} = 0$$

This model accounts for *m* different constituents with bulk-like optical constants ε_n . Depolarization factors L_j represent the biaxial film geometry. A projection matrix is applied to transform the virtual orthogonal basis into a monoclinic system.

D. Schmidt *et al.* Appl. Phys. Lett. **100**, 011912 (2012). K. B. Rodenhausen, D. Schmidt *et al.* Opt. Express **20**, 5419 (2012)

7th Workshop Ellipsometry, Leipzig, Germany 2012

Best-Match Model Parameters

Parameter	Co F1 (0 d)	Co F1 (after 60 d)	Co F1+Al ₂ O ₃ (0 d)	Co F1+Al ₂ O ₃ (after 60 d)
<i>t</i> (nm)	84.80(3)	84.88(4)	89.46(3)	89.86(3)
Θ (°)	62.52(1)	61.85(1)	62.69(1)	62.80(1)
β(°)	80.91(3)	84.21(2)	82.96(2)	83.39(2)
f _{void} (%)	75.99(1)	77.44(1)	62.03(1)	59.33(6)
f _{Al2O3} (%)			13.98(8)*	16.74(6)*
L ^D a	0.3983(1)	0.3817(1)	0.4035(2)	0.4030(2)
L ^D b	0.5134(1)	0.4469(1)	0.5267(2)	0.5283(2)
L ^D _c	0.0884(3)	0.1714(4)	0.0698(7)	0.0688(6)
MSE	12.45	13.42	8.45	10.82

*marginal changes are attributed to humidity changes \rightarrow very sensitive optical humidity sensor

SEM Estimates *r*_{avg} = 11 nm (Co F1)

 $n_{\rm C} \approx 360 \text{ columns}/\mu m^2$

Ellipsometry Results $n_{\rm C}$ = 302 columns/µm² surface area SA = 4.9 µm² surface area to volume ratio SA:V = 190 m⁻¹

 Al_2O_3 thickness $t_{AIO} = 2.80$ nm

 Al_2O_3 ALD with identical parameters on 100 nm solid Co reference sample results in a layer thickness t_{AlO} = 3.29 nm

D. Schmidt et al. Mat. Res. Soc. Symp. Proc. 1409 (2012).

Funding: NSF RII (EPS-1004094) and CAREER (ECCS-0846329)