Vector Magneto-Optical Generalized Ellipsometry on Slanted Columnar Thin Films

UNIVERSITY OF NEBRASKA-LINCOLN

D. Schmidt*, C. Briley, E. Schubert, and M. Schubert

Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, U.S.A.

*schmidt@huskers.unl.edu

http://ellipsometry.unl.edu

http://cnfm.unl.edu

Magneto-Optical Characterization

Dielectric Tensor

Off-diagonal parts account

for magneto-optical activity

Dielectric tensor of a magnetized biaxial

SCTF with polar, transversal, and

longitudinal magneto-optical elements

 \mathcal{E}_{off}

 $\varepsilon_{xv}^{\mathsf{P}}$

EATH

 $-\mathcal{E}_{r}^{\perp}$

 $\mathcal{E}_{yz}^{\mathsf{L}}$

E eff.

Our Message

- Glancing angle deposition is utilized to grow magnetic slanted columnar thin films (SCTFs), which then are passivated with a thin conformal Al₂O₃ layer by means of atomic layer deposition (ALD).
- An anisotropic Bruggeman EMA approach is employed to analyze Mueller matrix ellipsometry spectra and to determine monoclinic optical and structural properties as well as fractions of multiple film constituents at 0 T.
- Vector magneto-optical generalized ellipsometry (VMOGE) is an excellent approach to investigate magneto-optical and magnetization properties of complex anisotropic nanostructures.
- Slanted columnar thin films exhibit highly anisotropic magneto-optical and magnetization properties due to geometry, size, coupling, and confinement effects.

Mueller Matrix Ellipsometry

results in self-organized, coherently aligned slanted columnar thin films due to geometrical shadowing, and limited surface adatom mobility. Subsequently, the nanostructure was passivated by

atomic layer deposition of Al2O3 to prevent oxidation

Experimental Techniques

Vector Magneto-Optical Generalized Ellipsometry

Vector Magnet

Ferromagnetic Nanostructures

µ₀H

How do magnetic

domains align and how do they switch

- four solenoid pairs along the space diagonals for arbitrary magnetic field directions with up to $\mu_0 H = 200 \text{ mT}$
- field homogeneity >99% within the probed sample area
- stray fields <4%

- spectral range: 0.75 5 eV
- angle of incidence: 15°, 45°...90°
- equipped with focusing probes

Definition of VMOGE: k and k' denote the incident and emergent wave vectors, respectively, with an angle of incidence $\varPhi_{\rm a}.$ P, L, and T indicate polar, longitudinal, and transversal directions in accordance with traditional Kerr geometries

 S_0

 S_1

 S_2

The 4×4 realvalued Mueller matrix connects the incident and emergent Stokes vecto components

 $M_{11} \quad M_{12} \quad M_{13} \quad M_{14} \quad I_P + I_S$ M_{21} M_{22} M_{23} M_{24} $I_P - I_S$ M_{31} M_{32} M_{33} M_{34} $I_{45} - I_{-45}$ M_{41}

surface

D. Schmidt et al, Appl. Phys. Lett. 94, 011914 (2009)

Optical Model ($\mu_0 H = 0$ T)

Scanning electron microscope image of an unpassivated NiFe SCTF and optical model equivalent

Spatially aligned, anisotropic inclusions with three major

effective polarizabilities $\mathbf{P}_{\text{eff},j}$ along principal axes $j = \mathbf{a}, \mathbf{b}, \mathbf{c}$ (based on Bruggeman)

 $\varepsilon_n - \varepsilon_{{\rm eff},j}$

 $f \frac{1}{\varepsilon_{\mathrm{eff},j} + L_j(\varepsilon_n - \varepsilon_{\mathrm{eff},j})}$

This model accounts for m = 3 different constituents (Ni₈₀Fe₂₀, Al₂O₃, air) with bulk-like optical constants ε_n

Depolarization factors L_i represent the biaxial film geometry.

A projection matrix is applied to transform the virtual

orthogonal basis into a monoclinic system.

Optical and structural properties determined

prior to magneto-optical analysis

D. Schmidt et al. Appl. Phys. Lett. (in submission, 2011).

Biaxial EMA Lave

Si Substr

Results

Point-by-point fit of magnetic field-induced difference data, $\Delta M_{ij}(\mu_0 H = 170 \text{ mT}) - \Delta M_{ij}(\mu_0 H = 0 \text{ T})$, normalized to M₁₁ for an Al₂O₃ passivated Ni₈₀Fe₂₀ SCTF with respect to magnetic field orientation ($\phi_a = 55^\circ$, $\lambda = 500 \text{ nm}$)

magnetic field orientation (°)

LT-Loop

strong out-of-plane component magnetization ellipse depends on sample orientation (long axis of ellipse is parallel to long axis of columns)

PL-Loop

strong hysteresis exclusively along columns (no transversal component at $\varphi = 94.5^{\circ}$) magnetization only parallel to long axis of columns

→ three-dimensional magneto-optical parameter plots indicate sample magnetization!

2011 MRS Fall Meeting & Exhibit, Boston, MA, December 2011

(1 mm³ in the magnet center)

Woollam VASE®

- rotating analyzer ellipsomete with auto-retarder

- (beam size 1 mm)

 $M_{42} \quad M_{43} \quad M_{44} \quad I_{RC} - I_{LC}$

Ellipsometry measures the

polarization state change of

upon reflection off a sample

If the sample is anisotropic,

ellipsometry allows for determination of complete

sets of optical constants

spectroscopic Mueller matrix

an electromagnetic wave