Spectroscopic Ellipsometry for Metamaterials by Glancing Angle Deposition

NIVERSITY OF NEBRASKA-LINCOLN

D. Schmidt*, T. Hofmann, E. Schubert, and M. Schubert

¹ Department of Electrical Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, U.S.A.

*schmidt@huskers.unl.edu ellipsometry.unl.edu

Our Message

- > Glancing angle deposition is utilized to grow achiral and chiral metallic sculptured thin films
- > Generalized Ellipsometry (GE) is employed to determine optical and geometrical properties; slanted columnar thin films have monoclinic optical properties
- > Polar Magneto-Optical Kerr Effect measurements are analyzed to determine magneto-optical activity and giant Kerr rotation of low-symmetric ferromagnetic nanostructure thin films was measured
- > Vector Magneto-Optical Generalized Ellipsometry (VMOGE) allows for determination of the entire dielectric tensor by measuring at arbitrary magnetic field orientations and will give insight into magnetic domain switching of complex nanostructures

Monoclinic Slanted Columnar Thin Films

	GE	SEM
Thickness d	113.4 nm	125 nm
Inclination θ	55.3°	55°
Angle β	80.6°	

D. Schmidt et al., J. Appl. Phys. 105, 113508 (2009) D. Schmidt et al., Opt. Lett. 34, 992 (2009) D. Schmidt et al., Appl. Phys. Lett. 94, 011914 (2009).

Ferromagnetic Nanostructures

Magneto-Optical Generalized Ellipsometry

created by an electromagnet. Generalized ellipsometry in the polar configuration (incident light parallel to the magnetic field) can be performed by shining light through a hole in the magnetic pole piece.

Dielectric tensor of a biaxial material with

polar, transversal, and longitudinal

Dielectric Tensor

E

E,

Off-diagonal parts account

for magneto-optical activity

 $-\mathcal{E}_{r}^{1}$

 $\varepsilon_{yz}^{\rm L}$

magneto-optical elements

 $\mathcal{E} =$

external magnetic field. Only an azimuthally independent eP is necessary to model magneto-optic coupling.

If the sample is anisotropic, generalized (Mueller matrix) ellipsometry allows for determination of complete and accurate sets of optical constants.

Vector Magneto-Optical Generalized Ellipsometry

P2-83

Generalized Ellipsometry

Magnetic Field Orientation θ_m (°)

ICSE-V, International Conference on Spectroscopic Ellipsometry, Albany, NY, May 2010

Funding: CAREER, MRSEC, COE, JAWF

VMOGE measurements