

¹ Department of Electrical Engineering, and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, U.S.A.

***saenger@engr.unl.edu** *2 J. A. Woollam Co. Inc., Lincoln, Nebraska, U.S.A. 3 Q-Cells A.G., Bitterfeld-Wolfen, Germany*

http://ellipsometry.unl.edu

Our message

The film thickness and optical constants can be determined for all the presented textures as well as a virtual void fraction.

New method for measuring thickness in structured c-Si substrates.

The effective dielectric function of Si_xN_y decreases depending on the texture. This can be described by an effective medium approximation consisting of a fully dense Si_xN_y film and void optical constants.

IR data of the chemical bond mode amplitude and resonance energy distribution suggests a change in the chemical composition of the films in dependence on the texture.

Introduction

Results and Discussions

25 30 35

Ψ (deg)

UV-VIS: New measurement method and texture effects IR: Chemical bond modes and texture effects ent geor pyramid textured mono-crystalline Si wafers 50 Experimental (-----)
and best match

Thickness results Chemical modes

Thickness parameter values plotted versus deposition steps for the different textured wafers obtained from the UV-VIS (\bullet , \bullet) and IR (\circ) ellipsometry data analysis.

ange number or pyramines sharing are same onemation.

Ellipsometric parameter $\epsilon = \int_{air} E_{air} + \int_{Rct} E_{Ref}$.

State (---) provides a poor description of the IR experimental

data (---), provides a poor description of the IR e

Real (----) and imaginary (----) parts of the point-by-point extracted (dotted) and best-match calculation (solid
dielectric function of the Si_xN_y films for the different substrate types.

Gaussian oscillator model

$$
\varepsilon_2^v = Ae^{-\left(\frac{E-E_n}{B}\right)^2} + Ae^{-\left(\frac{E+E_n}{B}\right)^2}
$$

Changes in the chemical bond modes amplitude and resonance $\frac{2}{5}$ 5.0 energy parameter values suggest changes in the film chemistry from
substrate to substrate. Mode substrate to substrate.

References

[1] J. D. Hylton et al., J. Electrochem. Soc., 151, G408 (2004).
[2] Z. Yin, *et al.*, Phys. Rev. B **42**, 3666 (1990).
[3] M. Klanjšek Gunde *et al.,* Phys. Status Solidi A **183** (2), 439 (2001).
[4] J. J. Mei, *et al.*, J

Oscillator amplitude versus resonance energy

model parameters for the investigated samples.

J. A. Woollam Fdn., and startup funds from CoE at UNL

Δ

While in the NIR-UV
provided good description of the EMA
experimental sata. The EMA provides a
range. This apparent contracticion
range. This apparent contradiction
appears because the IR spectral range
is also sensitive t

The DF obtained from the UV-VIS and IR

bond modes, while in the NIR-UV spectral range no modes exist and the dispersion mostly depends on the higher energy electronic transitions.

analysis present both a decrease of the
real and imaginary parts. This effect is
substrate. This can be approximated by
substrate. This can be approximated by
an EMA combination. The variations in
the shape of the spectrum

approximation $(--)$ is not applicable for the IR data.