Polaron-phonon interaction in charge intercalated tungsten oxide thin films

UNIVERSITY OF NEBRASKA-LINCOLN

Mario Saenger^{1,*}, Thomas Höing², Tino Hofmann¹, and Mathias Schubert¹

¹ Department of Electrical Engineering, and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, U.S.A. ² FLABEG GmbH. und Co. KG, Furth i. Wald, Germany

*saenger@engr.unl.edu

ellipsometry.unl.edu

MoP.48

Results and Discussion

Phonon properties

Experiment and best-match model calculated ellipsometry data in the VIS-UV range at various intercalation states. (a) Gaussian and Lorentz, and (b) single-Lorentz lineshape approximation for the polaron contribution. The double oscillator

Imaginary part of the dielectric function. The vertical arrows indicate the hopping energy of the polaron 4-5 and 5-6 transitions. The hopping energy is reduced due to the W-O-W bond polarity decrease upon charge intercalation observed by the phonon mode reduction in band II (see graph "Vibration modes frequencies")

Experiment and best-match model ellipsometry data (Ψ) in the MIR range of tungsten oxide thin films with various intercalated charge densities. The phonon modes of interest for structural information are found below 2000 cm-1. The cross symbols denote the position of the LO₂ mode

٩N

80

70

Vibration modes frequencies

model describes precisely the expermental data

Oscillator resonance energy parameters of the 4-5 and 5-6 polaron transition. For charge densities higher than 10 mC/cm², the hopping energy is reduced with increasing charge density. The dotted lines are a guide to the eve

Polaron amplitude parameters Vs charge density

Oscillator amplitude parameters in dependence of the charge density for the 4-5 and 5-6 polaron transition. The sum of the oscillator amplitude follows an asymptotic saturation behavior characteristic from polaron hopping

Below: Imaginary part of the dielectric function of WO3 which reflects the change of the phonon mode contribution of the tungsten oxide film

Right: Bands of total reflection (TO-LO phonon bands) for the tungsten oxide films versus charge intercalation density. The stretching W-O-W mode is loosing polarity upon intercalation, while the double-bond modes strength. This is indicative gain foi intercalation-induced bond reformation

4th International Conference on Spectroscopic Ellipsometry, Stockholm, June 11-15 2007