Phonons, Optical Constants, and Composition Determination of InxGa1-xAs1-xN^y

G. Leibiger^{1*}, V. Gottschalch¹ and *I*University of Leipzig, Faculty for Chemistry and Mineralogy, Linn^x_{ktr.} 3, 04103 Leipzig, Germany M. Schubert² *²University of Leipzig, Faculty for Physics and Earthsciences, Linn¾str. 5, 04103 Leipzig, Germany*

ICNS-4 Denver, Colorado USA July 16-20, 2001

*E-mail: pge97jrk@studserv.uni-leipzig.de

NIR-Ellipsometry

Motivation

 \rightarrow InGaAsN as new material for long-wavelength Lasers and high-efficiency solar cells

→ Optical constants are needed for precise device design. \rightarrow X-ray diffraction fails to give relyable nitrogen- and indium concentrations, which are prerequisite for a better understanding of the complex MOVPE growth mechanism. \rightarrow Phonon properties of InGaAsN are still unknown.

Outline

 \rightarrow Deposition of In_xGa_{1-x}As_{1-y}N_y (*d* ~ 450 nm, *x* ~ 0.1, *y* < 0.03) single layers on GaAs substrates using metal-organic vaporphase epitaxy (MOVPE)

 \rightarrow Derivation of complex dielectric functions for 0.75 eV $\le E \le$ 1.3 eV and 100 cm⁻¹ $\leq \omega \leq 600$ cm⁻¹ using near (NIR)- and far (Fir)-infrared spectroscopic ellipsometry (SE), respectively

 \rightarrow Two-mode phonon behaviour (GaAs- a. GaN-like phonon)

 \rightarrow Calculation of nitrogen and indium concentrations combining the results from high-resolution x-ray diffraction (HRXRD) and FIRSE

 \rightarrow Precursors: TMGa; TMIn; Arsine; 1,1-DMHy

- \rightarrow Growth temperatures: T_G = 560-600°C
- \rightarrow Reactor pressure: $p_{\text{tot}} = 50$ mbar
- \rightarrow V/III ratios: V/III = 110-180
- \rightarrow Gas flow: f_{tot} = 7 l/min
- \rightarrow Carrier gas: H₂

(OO1) Te-GaAs

 \rightarrow redshift of *E*_o with increasing *y*

Model Dielectric Function

 $\tilde{I}(E) = \tilde{I}_0(E) + \tilde{I}_{\Delta 0}(E) + c + d \cdot E^2 + f E^4$

 $\tilde{I}_j(E) = A_j E_j^{-1.5} (\chi_j^{-2} [2 - (1 + \chi_j)^{0.5} - (1 - \chi_j)^{0.5}])$ with $\chi_j = (E_j + i\Gamma_j)/E_j$ [*j* = "0", " Δ_0 " for E_0 and $E_0 + \Delta_0$, respectively].

*Î*j (*E*) can be found, e. g., in S. Adachi, *Physical Properties of III-V Semiconductor Compounds* (Wiley, New York, 1992).

Optical Constants

Acknowledgment: This work is supported by the Deutsche Forschungsgemeinschaft under grant Go 629/4-1, and by the National Science Foundation under contract DMI-9901510.

y

 \rightarrow two-mode phonon behaviour: GaAs-like ($\omega_{\text{rot}} \sim 267 \text{ cm}^{-1}$) and GaNlike phonon $(0_{\text{max}} = 469...474 \text{ cm}^{-1})$

 \rightarrow blueshift of ω_{TO2} with *y* due to alloying (ω_{TO} ^{8-GaN} = 553 cm⁻¹) and compressive biaxial strain \rightarrow lower ω_{TQ2} - values of sample E due to lower In-concentration (lower compressive strain)

 \rightarrow amplitude *f* of GaN-like resonance $[f = (\omega_{LO2} - \omega_{TO2})/\omega_{TO2}]$ increases with *y* and with biaxial strain ε_{xx} , which is used to calculate N- and Inconcentrations

Model Dielectric Function

F. Gervais and B. Piriou, J. Phys. C **7**, 2374 (1974). D. W. Berreman and F. C. Unterwald, Phys. Rev. **174**, 791 (1968)

$$
\widehat{I}^L(\omega)=\widehat{I}_{\infty}\,\prod_{i\,=\,1}^2\,\frac{\omega_{\mathrm{LO}i}^{\mathrm{o}}\cdot\omega^{\mathrm{2}}\,\text{-}\,\mathrm{i}\,\,\omega\gamma_i}{\omega_{\mathrm{TO}i}^{\mathrm{o}}\cdot\omega^{\mathrm{2}}\,\text{-}\,\mathrm{i}\,\,\omega\gamma_i}
$$

Optical Constants

Determination of $y_{\rm N}$ and $x_{\rm In}$

Starting Point

- **1.)** FIR-Ellipsometry on GaAsN/GaAs and GaAsN/InAs/GaAs superlattices [J. Appl. Phys. **89**, 294 (2001)]:
- → amplitude *f* of the GaN-like phonon changes with *y* (N-concentration) and ε_{xx} (biaxial strain):
- $f = \alpha y + \beta \varepsilon_{xx}$ with $\alpha = 0.33$, $\beta = 0.51$ (1) → Assumption: Validity of Eq. 1 for InGaAsN
- **2.)** *f*-values resulting from FIR-Ellipsometrie on InGaAsN (this work)
- **3.)** lattice misfit $(\Delta a/a)$ _⊥ = $(a_{InGaAsN}^{\perp} a_{GaAs})/a_{GaAs}$ from HRXRD

Nitrogen-Concentrations

 \rightarrow relation between $(\Delta a/a)$ _⊥ and ε_{xx} :

$$
\mathbf{e}_{xx} \equiv \frac{a_{GaAs} - a_{InGaAsN}}{a_{InGaAsN}} = -\frac{a_{GaAs}}{a_{InGaAsN}} \cdot \frac{C_{11}}{C_{11} + 2C_{12}} \cdot \left(\frac{\Delta a}{a}\right),\tag{2}
$$

with the elastical constants C_{11} and C_{12} (start values: GaAs \rightarrow second iteration: linear interpolation between C_{1i} values of the binary endcompounds GaAs and β-GaN).

 $\rightarrow y = (f - \beta \varepsilon_{xy})/\alpha$ with ε_{xy} from Eq. 2 (3)

Indium-Concentrations

- \rightarrow Vegard's law für $a_{InGaAsN}$ following from Eq. 2:
- $a_{\text{InGaAsN}} = a_{\text{GaAs}}(1-x)(1-y) + a_{\text{InAs}}(1-y)x + a_{\text{GaN}}(1-x)y + a_{\text{InN}}xy$ (4)
- \rightarrow N-concentration follows after rearrangement of Eq. 4 with respect to *x*

Comparison with Growth Properties and Band Gaps

- **1.**) all samples: $x/x_g \approx 1$ but $y/y_g \ll 1$ (x_g, y_g : gas-phase concentrations) \rightarrow cause: rel. high vapor pressure of nitrogen above InGaAsN surface
- **2.)** samples B-E: calculated nitrogen concentrations increase with increasing gas-phase values, and correspondingly with decreasing band-gap energies
- **3.)** sample A: lowest N-concentration (highest *E*^g) despite highest gas phase value due to increased growth temperature
- **4.)** sample E: strong increase of nitrogen-composition due to reduced In concentration

