Phonons, Optical Constants, and Composition Determination of In_vGa_{1-v}As_{1-v}N_v

G. Leibiger^{1*}, V. Gottschalch¹

Motivation → InGaAsN as new material for long-wavelength Lasers and

→ Optical constants are needed for precise device design.

concentrations, which are prerequisite for a better under-

 \rightarrow X-ray diffraction fails to give relyable nitrogen- and indium

M. Schubert²

high-efficiency solar cells

¹University of Leipzig, Faculty for Chemistry and Mineralogy, Linn%tr. 3, 04103 Leipzig, Germany ²University of Leipzig, Faculty for Physics and Earthsciences, Linn^{*}/str. 5, 04103 Leipzig, Germany

ICNS-4 Denver, Colorado USA July 16-20, 2001

*E-mail: pge97jrk@studserv.uni-leipzig.de

NIR-Ellipsometry

Pseudodielectric Function

 $<\epsilon>= \{[(1 - \rho)/(1 + \rho)]^2 \sin^2 \Phi_a + \cos^2 \Phi_a\} \tan^2 \Phi_a$

 \rightarrow redshift of E_0 with increasing y

Model Dielectric Function

 $\hat{I}(E) = \hat{I}_0(E) + \hat{I}_{A0}(E) + c + d \cdot E^2 + f \cdot E^4$

 $\hat{I}_{i}(E) = A_{i}E_{i}^{-1.5}(\chi_{i}^{-2}[2 - (1 + \chi_{i})^{0.5} - (1 - \chi_{i})^{0.5}])$ with $\chi_i = (E_i + i\Gamma_i)/E_i$ [j = "0", " Δ_0 " for E_0 and $E_0 + \Delta_0$, respectively].

 $\hat{I}_{i}(E)$ can be found, e. g., in S. Adachi, *Physical Properties of III-V* Semiconductor Compounds (Wiley, New York, 1992).

Optical Constants

Acknowledgment: This work is supported by the Deutsche Forschungsgemeinschaft under grant Go 629/4-1, and by the National Science Foundation under contract DMI-9901510.

 \rightarrow two-mode phonon behaviour: GaAs-like ($\omega_{TO1} \sim 267 \text{ cm}^{-1}$) and GaNlike phonon ($\omega_{TO2} = 469...474 \text{ cm}^{-1}$)

 \rightarrow blueshift of ω_{TO2} with y due to alloying ($\omega_{TO}^{\beta-GaN} = 553 \text{ cm}^{-1}$) and compressive biaxial strain \rightarrow lower ω_{TO2} - values of sample E due to lower In-concentration (lower compressive strain)

 \rightarrow amplitude f of GaN-like resonance $[f = (\omega_{1,\Omega_2} - \omega_{T\Omega_2})/\omega_{T\Omega_2}]$ increases with y and with biaxial strain ε_{xx} , which is used to calculate N- and Inconcentrations

Model Dielectric Function

F. Gervais and B. Piriou, J. Phys. C 7, 2374 (1974). D. W. Berreman and F. C. Unterwald, Phys. Rev. 174, 791 (1968)

Optical Constants

Determination of y_{N} and x_{In}

Starting Point

- 1.) FIR-Ellipsometry on GaAsN/GaAs and GaAsN/InAs/GaAs superlattices [J. Appl. Phys. 89, 294 (2001)]:
- \rightarrow amplitude f of the GaN-like phonon changes with y (N-concentration) and ε_{xx} (biaxial strain): (1)
- $f = \alpha y + \beta \varepsilon_{xx}$ with $\alpha = 0.33$, $\beta = 0.51$ → Assumption: Validity of Eq. 1 for InGaAsN
- 2.) f-values resulting from FIR-Ellipsometrie on InGaAsN (this work)
- 3.) lattice misfit $(\Delta a/a)_{\perp} = (a_{InGaAsN}^{\perp} a_{GaAs})/a_{GaAs}$ from HRXRD

Nitrogen-Concentrations

 \rightarrow relation between ($\Delta a/a$) and ε_{vv} :

$$\boldsymbol{e}_{xx} \equiv \frac{a_{GaAs} - a_{InGaAsN}}{a_{InGaAsN}} = -\frac{a_{GaAs}}{a_{InGaAsN}} \cdot \frac{C_{11}}{C_{11} + 2C_{12}} \cdot \left(\frac{\Delta a}{a}\right)_{\perp}, \tag{2}$$

with the elastical constants C_{11} and C_{12} (start values: GaAs \rightarrow second iteration: linear interpolation between C11 values of the binary endcompounds GaAs and β-GaN).

(3)

Indium-Concentrations

 \rightarrow Vegard's law für $a_{InGaAsN}$ following from Eq. 2:

 $\rightarrow y = (f - \beta \epsilon_{xx})/\alpha$ with ϵ_{xx} from Eq. 2

- $a_{InGaAsN} = a_{GaAs}(1-x)(1-y) + a_{InAs}(1-y)x + a_{GaN}(1-x)y + a_{InN}xy$ (4)
- \rightarrow N-concentration follows after rearrangement of Eq. 4 with respect to x

Comparison with Growth Properties and Band Gaps

Sample	Α	в	С	D	E
$(\Delta a/a)_{\perp}$	7.3·10 ⁻³	8.1.10-3	7.4·10 ⁻³	7.8·10 ⁻³	1.9·10 ⁻³
x	0.09(1)	0.11(1)	0.11(1)	0.12(1)	0.09(1)
у	0.013 (2)	0.019 (2)	0.022 (3)	0.024 (3)	0.029 (4)
xg	0.105	0.105	0.105	0.091	0.077
y _g	0.96	0.907	0.936	0.936	0.96
T _G (°C)	600	560	560	560	560
E_g (eV)	1.180	1.146	1.103	1.094	1.003

- 1.) all samples: $x/x_g \approx 1$ but $y/y_g \ll 1$ (x_g, y_g : gas-phase concentrations) → cause: rel. high vapor pressure of nitrogen above InGaAsN surface
- 2.) samples B-E: calculated nitrogen concentrations increase with increasing gas-phase values, and correspondingly with decreasing band-gap energies
- 3.) sample A: lowest N-concentration (highest E_g) despite highest gasphase value due to increased growth temperature
- 4.) sample E: strong increase of nitrogen-composition due to reduced Inconcentration

standing of the complex MOVPE growth mechanism. → Phonon properties of InGaAsN are still unknown. **Outline** \rightarrow Deposition of In_xGa_{1-x}As_{1-y}N_y (d ~ 450 nm, x ~ 0.1, y < 0.03) single layers on GaAs substrates using metal-organic vaporphase epitaxy (MOVPE)

 \rightarrow Derivation of complex dielectric functions for 0.75 eV $\leq E \leq$ 1.3 eV and 100 cm⁻¹ $\leq \omega \leq 600$ cm⁻¹ using near (NIR)- and far (Fir)-infrared spectroscopic ellipsometry (SE), respectively

→ Two-mode phonon behaviour (GaAs- a. GaN-like phonon)

→ Calculation of nitrogen and indium concentrations combining the results from high-resolution x-ray diffraction (HRXRD) and FIRSE

Samples/MOVPE N- and In-Concentrations GaAs $(d \sim 30 \text{ nm})$

InGaAsN $(d \sim 450 \text{ nm})$ Sample A B C D 0.11 GaAs (d ~ 400 nm 0.013 0.019 0.022 0.024 0.029 (001) Te-GaAs

- → Precursors: TMGa; TMIn; Arsine; 1,1-DMHy
- \rightarrow Growth temperatures: T_G = 560-600°C
- \rightarrow Reactor pressure: $p_{tot} = 50$ mbar \rightarrow V/III ratios: V/III = 110-180
- \rightarrow Gas flow: $f_{tot} = 7$ l/min
- \rightarrow Carrier gas: H₂

