THz Ellipsometry Materials Characterization

T. Hofmann¹, C.M. Herzinger², and M. Schubert¹

UNIVERSITY OF NEBRASKA-LINCOLN

¹ Department of Electrical Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, U.S.A. 2 J. A. Woollam Co. Inc., 645 M Street, Suite 102, Lincoln, NE 68508-2243, U.S.A

ellipsometry.unl.edu thofmann@engr.unl.edu

Our Message Motivation: THz Spectroscopic Ellipsometry 2D Semiconductor & Semimetal Complex Metamaterials 3D Nanostructure Networks • **We demonstrate the first desktop THz ellipsometer in the frequency range from 0.1** *E* [meV] 100 150 200 250 300 **to 1.5 THz (3 to 50 cm-1) using a rotating** ^μ*0H* THz-IR analyzer configuration and a tunable Ψ [°] **backward wave oscillator source.** • **THz ellipsometry enables optical and contact** E. Schubert, UNL **- ⁺** 500 750 1000 1250 1500 1750 2000 2250 2500 ^ω [cm-1] **- ⁺ free determination of low (!) (~1015 cm-3) free** resonances in a sculptured Al thin Film on Si **charge carrier concentrations in Si bulk and** confinement-effects in low D. E. Scharett and R. E. Garrison Arm. Log. **37** (2005) **layered structures.** dimensional systems • future nanoelectronics will be assembled $\omega_{\text{o}, \text{moch}}$ from nano-sized thin film structures and **Generalized ellipsometry in combination with external magnetic fields:** • **THz ellipsometry may open new pathways** metamaterials p-Si (b) new physical phenomena in these building
plocks like quantum confinement and surface **for non-destructive investigation of the** • Semiconductors: unbound charge carrie new detector blocks like quantum confinement and surface
effects will alter the physical properties and **electrical properties of complex materials** resonances in spatially confined structures in $ω_{0}$ _{ru} $±ω$ need to be studied structures: quantum opto-mechanical 0,*EM* 0,*mech* needed as building blocks for next generation the THz frequency domain • Highly oriented pyrolytic graphite: Landau level transitions, electron and hole contributions **nanoelectronics.** couplers with **optical metrology tools needed** ν $p-Si$ Eigenresonances in the THz-IR domain *optical and mechanical Eigenresonances of these material fall in the THz domain* **THz Spectroscopic Ellipsometry - Experimental Setup Backward Wave Oscillator Source Experimental Setup**or **Experimental Setup**or **Experimental Setup**or **Experimental S** permanet
magnet t **GC** 10 **S A** Power [mW] cathode $+1$ 0.1 e-beam **AWANNA BWO C₁ PR C Polarization rotator:** 0.01 slowing system г waveguide & 1E-3 emitted THz anode ^ν [THz] **Lincoln, 2008** radiation output power of the BWO augmented with different Schottky diode multipliers (x2, x3, x6, x9) • rotating analyzer ellipsometry configuration • acceleration voltage up to 3 kV • employs polarization rotator to change the input polarization (PR) • cathode current ~20 mA • base resonator frequency: 107 to 177 GHz • peak power: pea po e 0.1-0.18 THz: 0.1-0.01 W (!) • polyethylene substrate wire grid polarizer (A) • Golay detector (GC) • base resonator bandwidth 2 MHz (!) • full spectral range when augmented by Schottky diode multipliers: 0.1 to 1.5 THz • emits linearly polarized light Patent application filed with UNL, Sept. 2008 **Experimental Results Highly Doped Si Low Doped Si Etalon Low Doped Si Epi-Layer on Doped Si** Fabry-Pérot oscillations in a 384 μm thick low doped Si:P etalon 45 60 $Φ_s=75°$ THz range analysis reveals free charge carrier properties 34 40 ^Φa=55° highly doped Si wafer used 30 $Φ_3 = 50°$ Ψ [deg] in Si epi-layer *N***=2.8 1015 cm-3** and Ψ [deg] for single frequency system 35 calibration 32 $Φ_a=55°$ ^μ**=683 cm2/(Vs)** Drude best-fit model Ψ [deg] Ψ [deg] (m^{*}=0.45; $ρ = 3.9$ Ωcm and 20 30 describes THz and MIR $Φ_a=65°$ $\tau = 155$ fs) range consistently 30 ^Φa=75° 25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.5 1.0 $\frac{1}{10}$ 20 30 40 50 10 $Φ₂=65°$ ^ν [THz] ^ν [THz] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 2 4 6 8 10 ,
ΠΉz ^ν [THz] 1.0 FIR region (80 to 333 cm-1) is THz range model calculations FIR region (80 to 333 cm $^{-1}$) is ^Φ =55° ^a 55 • consistent model describes impaired by non-idealities in ^Φa=65° $\Phi_a = 75^\circ$ excellently resemble residual 0.8 the optical response from 0.2 to 50 THz (6 to 1667 cm-1) Drude absorption! etalon and measurement $\Phi_{a} = 75^{\circ}$ 0.9 sin 2Ψ cos Δ sin 2Ψ cos Δ system! 0.4 $\Phi_a = 75^\circ$ (Si epi-layer thickness: 17μm,
Si substrate: $ρ = 0.012$ Ωcm features are highly
aducible - refinement of 0.0 0.8 and $\tau = 4.5$ fs) reproducible – refinement of the calibration model (wvl $Φ₈=65°$ • residual epi-layer doping THz range analysis enables determination of bulk free charge -0.4 carrier concentration *N***=1.3 1015 cm-3** and remains undetected in MIR 0.7 ^Φa=55°

mobility μ =932 cm²/(Vs) (m^{*}=0.45; ρ =5 Ωcm and τ =239 fs)!

dependency) needed

0.2 0.4 0.6 0.8 1.0 1.2 1.4

^ν [THz]

-0.8

0.0 0.5 1.0 10 20 30 40 50

range (333 – 1667 cm-1)

^ν [THz]